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A B S T R A C T

The multiple vehicle pickup and delivery problem is a generalization of the traveling salesman problem that has
many important applications in supply chain logistics. One of the most prominent variants requires the route
durations and the capacity of each vehicle to lie within given limits, while performing the loading and unloading
operations by a last-in-first-out (LIFO) protocol. We propose a learning-based memetic algorithm to solve this
problem that incorporates a hybrid initial solution construction method, a learning-based local search procedure,
an effective component-based crossover operator utilizing the concept of structured combinations, and a longest-
common-subsequence-based population updating strategy. Experimental results show that our approach is
highly effective in terms of both computational efficiency and solution quality in comparison with the current
state-of-the-art, improving the previous best-known results for 132 out of 158 problem instances, while matching
the best-known results for all but three of the remaining instances.

1. Introduction

The travelling salesman problem with pickup and delivery (TSPPD)
is a generalization of the well-known traveling salesman problem with
many important applications (Azadian, Murat, & Chinnam, 2017;
Pavone, 2013; Yu, Tang, Li, Sun, & Wang, 2016). TSPPD consists of
determining a minimum cost circuit travelled by a vehicle to service
several predefined requests to transport items from a specified pickup
location to a specified delivery location. The vehicle starts from the
depot and returns to it after all the requests have been serviced.

The TSPPD problem constitutes an instance of the widely studied
vehicle routing problem that complicates the travelling salesman pro-
blem by introducing multiple vehicles and multiple routes, and embo-
dies many variants by considering different constraints (such as vehicle
capacities, time windows, and two or three-dimensional loading con-
straints (Mack & Bortfeldt, 2012). We first sketch a background of re-
cent research in this field and then identify distinguishing character-
istics of the TSPPD problem and its applications.

1.1. Brief background of recent vehicle routing research

Bortfeldt (2012) introduced an efficient hybrid heuristic to solve the

capacitated vehicle routing problem by considering both vehicle ca-
pacity limits and three-dimensional loading constraints and employing
the tabu search algorithm for routing together with a tree search al-
gorithm for loading. Bortfeldt and Homberger (2013) proposed a two-
stage heuristic method to solve the vehicle routing and loading problem
by combining vehicle routing, possibly with time windows, and three-
dimensional loading, as well as some packing constraints. The proposed
two-stage heuristic is following a “packing first, routing second“ ap-
proach, i.e, the packing of goods and the routing of vehicles is carried
out in two strictly separated stages. Wei, Zhang, and Lim (2014) de-
veloped an adaptive variable neighborhood search for the hetero-
geneous fleet vehicle routing problem with three-dimensional loading
constraints (3L-HFVRP) by utilizing an extreme point based first fit
heuristic to find a feasible loading pattern for each route, and designed
two strategies to accelerate the loading and routing processes. Turky,
Moser, and Aleti (2017) presented an iterated local search with guided
perturbation for the 3L-HFVRP with time window constraints. Experi-
mental results show that their proposed perturbation procedure sig-
nificantly enhances the performance of the iterated local search algo-
rithm on such constrained problems. Pace, Turky, Moser, and Aleti
(2015) considered the 3L-HFVRP with capacity constraints and applied
local search approach to test its performance based on data obtained
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from their industry partner. Koch, Bortfeldt, and Wäscher (2018) con-
sidered vehicle routing problems with backhauls, time windows, si-
multaneous delivery and pickup and three dimensional loading con-
straints (3L-VRPSDPTW), proposing a hybrid algorithm consisting of an
adaptive large neighborhood search for the routing and different
packing heuristics for the loading problem. Reil, Bortfeldt, and Mönch
(2018) considered the vehicle routing problems with backhauls, time
windows and three dimensional loading constraints, studying different
backhaul variants, including clustered backhauls, mixed linehauls and
backhauls, and variants with simultaneous delivery and pickup and
with divisible delivery and pickup. They employed another two-phase
method to tackle this problem, in which the first phase of their method
carried out the packing of goods for solving a 3D strip packing problem
for each customer using tabu search. The second phase frist used a
multi-start evolutionary strategy to minimize the number of vehicles
and then a tabu search to minimize the total travel distance.

1.2. Distinguishing characteristics of the TSPPD problem and its
applications

In the TSPPD problem, there exist two ways in which the loading
and unloading operations corresponding to the pickup and delivery
activities, respectively, are performed, namely first-in-first-out (FIFO)
and last-in-first-out (LIFO), which correspond to two variants of TSPPD,
called TSPPD with LIFO and TSPPD with FIFO. The FIFO policy implies
that when a pickup node is visited, its corresponding item is loaded in a
linear queue and an item can only be delivered if it is the first item of
the queue, while the LIFO policy utilizes the mechanism of stack instead
of queue, i.e., an item can be delivered if it is on the top of the stack.
Fig. 1 depicts the two different policies, in which +0 and 0 represent
the depot at the beginning and end of the two routes, and +i and i
represent the pickup and the delivery nodes for item i (and similarly for
item j), where Fig. 1(a) and (b) show the FIFO and LIFO loadings, re-
spectively.

In practice, TSPPD with FIFO exists in many real-life applications
such as the dial-a-ride system where the major concern is fairness, i.e.,
the passengers (such as patients) picked up earlier must be dropped off
earlier. Previous contributions to solve this problem include a branch-
and-bound algorithm by Carrabs, Cerulli, and Cordeau (2007), a
branch-and-cut algorithm by Cordeau, DellAmico, and Iori (2010) that
can solve instances with up to 25 requests, and two effective heuristics
based on probabilistic tabu search and iterated local search by Erdogan,
Cordeau, and Laporte (2009). Recently, Lu, Benlic, and Wu (2018)
proposed a multi-restart iterative search approach based on combined
utilization of six move operators to tackle this problem.

On the other hand, TSPPD with LIFO likewise occurs in many ap-
plications, such as the transport of bulky, fragile, or hazardous items.
Cordeau, Iori, Laporte, and Salazar González (2010) proposed a branch-
and-cut algorithm that can solve instances with up to 17 requests, while
Li, Lim, Oon, Qin, and Tu (2011) proposed a variable neighborhood
search heuristic based on a tree representation to improve the previous
results in the literature. In general, TSPPD and its variants have been
extensively researched in the literature, where the recent studies in-
clude (Chami, Manier, & Manier, 2017; Furtado, Munari, & Morabito,

2017; Montero, Miranda-Bront, & Mndez-Daz, 2017; Naccache, Côté, &
Coelho, 2018; Veenstra, Cherkesly, Desaulniers, & Laporte, 2017).

In this paper we focus on the pickup and delivery problem under the
LIFO policy, utilizing a general framework that can also be applied to
address the problem under the FIFO policy. Specifically, we extend the
TSPPD problem to involve multiple vehicles, enabling the single vehicle
problem to be handled as a special case.

Over the past decades, several state-of-the-art algorithms have been
proposed for solving TSPPD with the multiple vehicle extension.
Kachitvichyanukul, Sombuntham, and Kunnapapdeelert (2015) pro-
posed two new solution representations, SD2 and SD3 for PSO algo-
rithm which they used in conjunction with a variant of PSO involving
multiple social learning terms in application to the generalized multi-
depot vehicle routing problem with multiple pickup and delivery re-
quests. Cherkesly, Desaulniers, and Laporte (2015) proposed a popu-
lation-based metaheuristic to address the multiple vehicle pickup and
delivery problem with LIFO loading and time windows, called the
MPDPL with time windows. The authors combined local search with a
genetic algorithm to produce high-quality solutions within reasonable
computing times. Cheang, Gao, Lim, Qin, and Zhu (2012) considered
the case where the route length of each vehicle cannot exceed a max-
imum limit and the vehicles have unlimited capacity, called MPDPL
with distance constraints, abbreviated as PDPLD. They proposed a two-
stage approach for solving the problem to minimize the total distance
and the number of vehicles, employing simulated annealing and ejec-
tion pool in the first stage, and variable neighborhood search and
probabilistic tabu search in the second stage. Benavent, Landete, Mota,
and Tirado (2015) addressed MPDPL with distance constraints (PDPLD)
as a special case of MPDPL with maximum time (which is called the
pickup and delivery problem with limited time, abbreviated as PDPLT),
observing that minimizing the total distance is equivalent to mini-
mizing the total time and that minimizing the number of vehicles as the
primary objective can be addressed by adding a large number to the
travel times of the arcs leaving the depot. However, the exact method
proposed by Benavent et al. (2015) can only solve instances with up to
60 nodes, while their proposed tabu search can solve larger instances
with up to 400 nodes.

This difference between the exact and metaheuristic methods mo-
tivates us to employ a metaheuristic approach to tackle large-size in-
stances of the PDPLT problem. The main contributions of our study are
as follows:

• A learning-based memetic algorithm (LMA) for solving PDPLT,
which introduces a hybrid initial solution construction method by
incorporating the splitting approach and the Lin-Kernighan heuristic
(LKH) for the asymmetric travelling salesman problem (ATSP), a
subproblem of PDPLT, to generate a random initial population with
high quality.
• A reward and punishment mechanism inspired by reinforcement
learning to manage the multiple neighborhood moves and guide the
search.
• A component-based crossover operator and a longest-common-sub-
sequence-based (LCS-based) population updating strategy to obtain
a better trade-off between intensification and diversification of the
search.
• Our experimental results demonstrate that the performance of our
LMA is highly effective compared to state-of-the-art approaches in
the literature by improving the previous best-known results for 131
out of 158 problem instances (including both PDPLD and PDPLT
instances), while matching the best-known results for all but three of
the remaining instances.

We organize the rest of the paper as follows: Section 2 introduces
the PDPLT problem and Section 3 presents the proposed memetic al-
gorithm for solving PDPLT in detail. Section 4 presents and discusses
the proper setting of the key parameters and examine the performanceFig. 1. The FIFO and LIFO loadings in the pickup and delivery problem.
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of the proposed algorithm against the current best performing algo-
rithms for both PDPLT and PDPLD. In Section 5 we analyze the main
strategic components of our algorithm. Finally, we conclude the paper
and suggest topics for future research in Section 6.

2. Problem description and definitions

2.1. Problem description

In PDPLT, we are given a set =N n{1, , } of n requests, each of
which concerns the transport of an item with a load from pickup vertex
+i to delivery vertex i ( i n1 ). There are several vehicles with
limited capacity that starts from a depot vertex +0 and return to a depot
vertex 0 with the objective of minimizing the total travel time incurred
by all the vehicles. The vehicles must fulfill all the requests by visiting
each pickup vertex to pick up the indicated load and travel to the
corresponding delivery vertex to deliver the load in accordance with the
LIFO policy. Specifically, PDPLT is defined on a complete weighted
undirected graph =G V E( , ) with the following features.

• =V P D O denotes the set of nodes, where = + + +P n{1 , 2 , ..., }
denotes the set of pickup nodes, =D n{1 , 2 , ..., } is the set of de-
livery nodes, O denotes the set of starting and ending nodes +{0 , 0 },
also called depots, and = =E u v u v V u v{( , ): , , )¯ } is the edge set.
• Each item must be picked at +i P and delivered at i D, where
the load of the item is denoted by di.
• The service time at each pickup node or delivery node u P D is
denoted by stu, and the travel time to traverse the arc u v E( , ) is
denoted by ttu v, .
• The maximum capacity of each vehicle is .
• The maximum duration of each route including the service time and
traversal time is MD.

Let R be one route in a solution S and
= = =+R u u u u{ 0 , , , , 0 }m0 1 2 , where uk is the kth node visited in R

( k m1 ). If the visited node is a pickup node (i.e., uk P), the
corresponding load capacity of the vehicle after visiting it is

=l u l u( ) ( )k k 1 + duk, while the corresponding load of the vehicle after
visiting it is equal to =l u l u( ) ( )k k 1 - duk if the visited node is a pickup
node (i.e., uk D). For each node in the route, the corresponding load
cannot exceed the given maximum capacity, i.e., l u MC( )k . We de-
note by = = +DT R tt( ) k

m
u u0

1
,k k 1 the total traversal time and

= =ST R st( ) k
m

k1
1 the total service time. The corresponding duration of

each route including the traversal time and service time cannot exceed
the given maximum duration, i.e., +DT R ST R MD( ) ( ) . In addition,
the LIFO policy is followed for both pickup and delivery operations. A
feasible solution to this problem is a set of vehicle routes that satisfy
three constraints, i.e., the maximum capacity, maximum duration, and
LIFO constraints. The objective is to find a feasible solution with the

minimum total travel time as follows:

= +
=

Minimizef S DT R ST R( ) ( ) ( ),
i

S

i i
1 (1)

We refer the reader to benavent2015multiple for more details of the
mathematical formulation of the problem.

2.2. Definitions

A pair consisting of the pickup vertex +i and the corresponding
delivery vertex i is called a couple, i.e., request. A component is a set of
vertices, before the beginning and at the end of which there are no
requests being transported by the vehicle. Erdogan et al. (2009) first
defined the concept of component for FIFO and we extend this concept
for both FIFO and LIFO policies in this study. In particular, we in-
troduce a term k( ) to denote the number of uncompleted requests
when the kth vertex is visited in a route. If the value of k( ) for the
pickup vertex k is equal to 1, then k is the beginning of its component. If
the k( ) for the pickup vertex k is equal to 0, then k is the end of its
component. Fig. 2 is an example in which there are two components in
the route. The vertices in positions 1 and 7 identify the beginnings of
the two components as their values are equal to 1, i.e., there are no
requests transported by the vehicle before visiting these two nodes. The
delivery vertices in positions 6 and 10 respectively correspond to the
ends of the components as their values are equal to 0. There are no
requests for the vehicle after serving these two vertices. Hence, the
paths from positions 1 to 6 and positions 7 to 10 denote two different
components.

3. Memetic algorithm

3.1. Main framework

A memetic algorithm is a general-purpose metaheuristic approach
that typically combines a local search optimization procedure with a
population-based framework, which has been successfully applied to
tackle many classical combinatorial optimization problems, including
the quadratic assignment problem (Benlic & Hao, 2015), which pro-
vides a different generalization of the traveling salesman problem. The
purpose of combining local search and population-based strategies is to
take advantage of both the crossover operator as a diversification me-
chanism for discovering promising unexplored regions of the search
space and the local optimization as an intensification procedure to
obtain high-quality solutions within a search region. We outline our
proposed memetic algorithm for PDPLT in Algorithm 1. At the begin-
ning of the algorithm, we iteratively employ a hybrid heuristic method
to generate the initial population (line 1). Following this, we employ a
learning-based local search to optimize the solutions in the population

Fig. 2. Example of components.
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(lines 2–4). Later, we iteratively combine two parent solutions ran-
domly selected from the population to generate offspring solutions
using a component-based crossover operator under the LIFO policy
until the stopping criterion, i.e., maximum computing time, is satisfied
(lines 5–7). After each use of the crossover operator, we improve the
generated offspring solution using a learning-based local search to
guide the search to promising regions (line 8). During this process, S
records the best solution found so far (lines 9–11). We then apply the
longest-common-sequence-based (LCS-based) population updating
strategy to possibly replace the worst individual in the population with
the improved offspring solution (lines 12–15).

Algorithm 1. Framework of the memetic algorithm for solving PDPLT

Require: Benchmark instance (B); the maximum computing time (Tmax )
Ensure: Best-found solution (S )
/ Generate np feasible solutions as an initial population (Section 3.2) /

1: =P S S Hybird inital solution B{ , , } _ _ ( )c np1

/ Improve each individual Si in the population with a learning-based local search
(Section 3.3) /

2: for =i np1, , do
3: Si Learning based localsearch_ _ (Si)
4: end for
5: while The maximum computing time Tmax is not reached do
6: Randomly select parent solutions Si and Sj from P where i j np1 , and i j

/ Generate offspring Sc from Si and Sj (Section 3.4) /
7: Sc Si Sj = Component based crossover_ _ (Si, Sj)

/ Improve Sc with a learning-based local search (Section 3.3) /
8: Sc Learning based localsearch_ _ (Sc)
9: Sc is better than S
10: S Sc
11: end if

/ The longest-common-subsequence based population updating strategy (Sect-
ion 3.5) /

12: Determine the worst individual Sw where the goodness value
GS S P( , )w c = min{GS S P( , )k c } , k np1 (see Eq. (7))

13: if GS S P S( , )c c c > GS S P S( , )w c c then
P14: c Pc Sc Sw

15: end if
16: end while
17: return (S )

3.2. Hybrid initial solutions

We construct the initial solutions by iteratively using a hybrid initial
procedure based on a splitting approach that is able to obtain high-
quality initial solutions within short computing time. A similar hybrid
initial procedure has been successfully employed to tackle various ve-
hicle routing problems (VRPs), e.g., multi-depot VRP (Escobar, Linfati,
Toth, & Baldoquin, 2014) and multi-route VRP (Azi, Gendreau, &
Potvin, 2014). In order to generate high-quality initial solutions, we
first adapt the splitting mechanism for our problem by employing the
Lin-Kernighan heuristic (LKH) for the ATSP subproblem in PDPLT to
improve the solution quality of the initial solutions. The steps of the

construction procedure are presented in Algorithm 2 and can be sum-
marized in the following steps:

Algorithm 2. Hybrid initial solution

Require: Benchmark instance (B)
Ensure: The initial solution (S0)
/ Step 1: Generate a set of components by randomly setting k couples as one
component, with satisfying the maximum capacity constraint /

1: t 0
2: while The request set N is not empty, i.e., N do
3: Construct each component by randomly selecting k requests (i.e., i i, , k1 ) f-

rom the request set N , by satisfying the maximum capacity constraint, i.e.,

< == d MCs
k

is1
4: N N i i{ , , }k1
5: t t + 1
6: Ct

+ +i i i i{ , , , , , }k k1 1
7: end while
/ Step 2: Construct a composite ATSP tour containing all the components gener-
ated in Step 1 by employing the well-known LKH as implemented /

8: S LKH_ATSP( C C C( , , , )t1 2 ) / t denotes the number of components generated
in Step 1 /

/ Step 3: Split the composite ATSP tour into several routes with satisfying the
maximum duration constraint /

9: Rm 0, m 1
10: for =i t1, , do
11: if DT(Rm Ci) + ST(Rm Ci) MD then
12: Rm Rm Ci
13: else
14: m m + 1
15: Rm Ci
16: end if
17: end for
/ Step 4: Use LKH to optimize each route /

18: for =i m1, , do
19: LKH_ATSP(Ri)
20: end for

S21: 0 (R1, , Rm)
22: return (S0)

• Step 1. Generate a set of components C by randomly setting k
( k1 3) couples + +i i i i{ , , , , , }k k1 1 as one component with sa-
tisfying both the LIFO constraint and maximum capacity constraint
(see lines 1–6 in Algorithm 2). For example, in Fig. 3, there exist six
components, i.e., C1-C6.
• Step 2. Construct a composite ATSP tour by employing the well-
known LKH procedure (Helsgaun, 2000) to optimize all the com-
ponents C C C( , , , )t1 2 generated in Step 1 (line 8). The reason why
we deploy the ATSP model to obtain high-quality route stems from
the fact that the traveling time from component C1 to component C2
is not necessarily equal to the traveling time from C2 to C1.
• Step 3. Split the composite ATSP tour into several routes, by itera-
tively inserting each component C into the current route R if the
current route satisfies the maximum duration constraint. Otherwise,

Fig. 3. Illustration of the construction mechanism for initial solutions.

B. Peng, et al. Computers & Industrial Engineering 142 (2020) 106241

4



we insert it into a new route (lines 9–17). For example, in Fig. 3, the
route of the whole ATSP tour is split into three routes to satisfy the
maximum duration constraint.
• Step 4. For each route R, we obtain an ATSP tour by using LKH to
minimize the total travelling cost for visiting the customers be-
longing to the route (lines 18–21). Finally, the generated solution S0
is returned as the initial solution (line 22).

The hybrid initial solution construction procedure proposed above
is usually able to generate feasible solutions that satisfy the three
constraints, i.e., the maximum duration, maximum capacity, and LIFO
constraints. In addition, high-quality solutions are generated within
reasonable computing times. In Section 5.1 we demonstrate the efficacy
of our procedure in comparison with other constructive methods pro-
posed in the literature.

3.3. Learning-based local search

One of the key components of our memetic algorithm is the
learning-based local search procedure that plays the critical role of
intensifying the search. With the exception of tabu search, traditional
local search utilizes a set of moves to search the solution regions
without maintaining a memory of the process, while the local search
based on our reinforcement learning mechanism is able to effectively
exploit memory to manage the neighborhood moves and guide the
search to promising regions.

3.3.1. Neighborhood moves
Our algorithm employs both intra-route moves (performed in the

same route) and inter-route moves (performed between two different
routes), as follows:

• Request-Insertion (M1): A request (e.g., +i i{ , }) is removed from its
current route and inserted either in a different position of the same
route or in a different route.
• Request-Swap (M2): Two requests (in the same route or in different
routes) exchange their positions.
• Double-Request-Swap (M3): Two pairs of consecutive requests ex-
change their positions. This operator extends the Request-Swap
move by considering consecutive requests i and j defined to be
consecutive if the pickup node +j of request j is the closest to pickup
node +i of request i in the route.
• Component-Insertion (M4): A component is removed from its cur-
rent route and inserted either in a different position of the same
route or in a different route.
• Component-Swap (M5): Two components (in the same route or in
different routes) exchange their positions.
• Double-Component-Swap (M6): Two pairs of consecutive compo-
nents exchange their positions. This operator extends the
Component-Swap move by considering two pairs of consecutive
components.

In our local search, we only consider neighborhood moves that can
satisfy all the three constraints, i.e., the maximum capacity, maximum
duration, and LIFO constraints. Obviously, in cases where the con-
straints are tight, it is very difficult to find feasible solutions in a single
move as confirmed in benavent2015multiple. Hence, the main differ-
ence of our approach from that proposed in Benavent et al. (2015),
where only the Request-Insertion move is used, is that we employ six
different neighborhood moves to expand the search space in order to
find more promising feasible solutions, instead of relaxing the max-
imum duration constraint and penalizing violations.

The size and complexity of the neighborhood structure significantly

Fig. 4. Illustration of the crossover operator with respect to the LIFO policy.

Table 1
Settings of some important parameters for LMA.

Parameter Description Candidate values Final value

The reaction factor that controls how quickly the score adjustment function reacts to changes according to the performance of the
moves

0.1, 0.2, 0.3 0.1

1 The reward parameter if a move produces a new best solution 1, 5, 10 5

2 The reward parameter if a move improves the current solution 1, 2, 5 1
The punishment parameter if a generated solution is worse than the current solution 0.8, 0.9, 0.99 0.9
The parameter of the ratio of the number of request nodes deleted in the perturbation strategy (n ) 2,4,6 4
The threshold used to employ the dedicated perturbation (n* ) 1, 5, 10 5

np The number of individuals in the population 10, 20, 30 10
The constant parameter to balance the objective value and the distance in the goodness value 0.5, 0.7, 0.9 0.7
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affect the performance of the algorithm. The request-insertion neigh-
borhood operator (M1) has n candidate requests to be removed, and

×n n(2 1)k k possible positions for each candidate pickup and its
corresponding delivery node, where nk denotes the number of vehicles
in route k. Hence the size of M1 neighborhood is

× ×=
=n n n( (2 1))k

k K
k k1 , where K denotes the number of routes. For

request-swap neighborhood operator (M2), the size of the neighborhood
is the same as the number of two candidate requests combinations,
which is equal to ×n n( 1) 2. For double-request-swap neighborhood
operator (M3), the size of the neighborhood is ×n n( 2) ( 3) 2. As
for the component based neighborhood operators (i.e., the component-
insertion operator (M4), component-swap (M5) and double-component-
swap (M6)n), the size of each neighborhood is no more than its corre-
sponding request-based neighborhood operators, since a component
usually consists of several requests. Therefore, the complexity of all the
six neighborhood operators employed in our method is bounded by
O n( )3 .

3.3.2. Learning mechanism
Reinforcement learning is an area of machine learning concerned

with how an agent should take actions in an environment so as to
maximize cumulative reward. The intuition underlying reinforcement
learning is that actions that lead to large rewards should be made more
likely to recur.

We employ a reward and penalty strategy to dynamically manage
the neighborhood moves and guide the search based on the expectation
that different neighborhood moves may be preferable for different
problem instances or search landscapes. Consequently, we keep track of
a score for each neighborhood move, which measures how well the
move has performed for the current instance or landscape, adopting the
perspective that alternating among different moves based on the pro-
posed learning mechanism may yield more robust performance.

To select moves, we assign scores to different moves and use the
roulette wheel selection principle. If we have n moves with scores sci
(i n1, 2, ..., ), move k is selected with probability k, where

Fig. 5. Box-and-whisker plots of the gaps between the objective values and the best found solutions for the considered parameters.
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Table 2
Results for solving public benchmark PDPLT instances with 100–110 nodes.

MS-ITS LMA MS-ITS LMA

Instances fbest Veh Time fbest Veh favg Time Instances fbest Veh Time fbest Veh favg Time

lc101 9867.61 10 65.91 9867.29 9 9868.01 16.31 lc201 9825.64 3 125.00 9824.76 3 9825.73 28.75
lc102 9862.70 9 59.19 9862.70 9 9862.70 27.87 lc202 9860.47 3 115.66 9860.24 3 9861.17 16.07
lc103 9867.84 9 56.47 9867.84 9 9867.98 10.69 lc203 9873.71 3 107.53 9873.71 3 9874.13 17.30
lc104 9857.95 10 62.22 9857.80 9 9857.95 41.32 lc204 9832.31 3 121.44 9830.38 3 9831.28 16.94
lc105 9848.78 9 54.31 9848.01 9 9848.83 4.94 lc205 9794.84 3 103.66 9794.84 3 9794.84 15.84
lc106 9866.18 9 60.28 9866.18 9 9866.18 10.71 lc206 9882.15 3 116.55 9882.15 3 9882.15 17.49
lc107 9874.48 9 62.25 9874.48 9 9876.24 33.08 lc207 9802.90 3 98.61 9802.90 3 9802.90 16.25
lc108 9862.42 9 60.89 9862.42 9 9863.11 48.03 lc208 9803.00 3 99.86 9803.00 3 9803.00 15.31
lc109 9855.31 9 52.73 9855.31 9 9855.32 22.76
lr101 2140.15 11 61.36 2110.53 10 2120.47 33.78 lr201 1967.24 3 188.69 1948.63 2 1955.15 16.49
lr102 2125.61 10 62.24 2114.12 10 2126.19 13.96 lr202 2130.35 3 188.00 2124.35 3 2129.76 10.86
lr103 2113.11 10 49.53 2111.05 10 2113.66 38.62 lr203 2102.09 3 208.83 2100.92 3 2101.99 18.68
lr104 2072.80 10 47.72 2064.99 10 2076.81 46.35 lr204 2184.12 3 189.06 2179.69 3 2185.68 12.80
lr105 2114.97 10 51.80 2109.91 10 2110.01 11.52 lr205 2079.14 3 202.53 2065.66 3 2085.43 23.56
lr106 2147.80 10 58.52 2126.12 10 2139.85 38.58 lr206 2111.64 3 168.78 2110.17 3 2111.32 19.20
lr107 2188.71 11 52.13 2173.23 10 2193.84 11.41 lr207 2146.86 3 188.17 2144.38 3 2148.59 75.53
lr108 2150.33 10 45.59 2148.11 10 2151.92 39.51 lr208 2090.03 3 170.94 2082.15 3 2093.70 16.28
lr109 2165.48 11 60.38 2154.84 10 2163.55 45.93 lr209 2066.29 3 211.49 2045.65 3 2058.91 21.55
lr110 2041.50 10 54.05 2041.50 10 2042.16 42.09 lr210 2073.73 3 193.95 2068.44 3 2070.08 97.72
lr111 2114.81 10 60.55 2110.61 10 2115.86 21.61 lr211 2027.38 3 216.20 2027.38 3 2027.98 16.87
lr112 2102.96 10 53.89 2098.09 10 2100.47 19.24
lrc101 2289.98 10 50.88 2265.37 10 2287.39 18.55 lrc201 2203.00 3 161.02 2168.34 3 2187.96 17.20
lrc102 2336.21 10 48.58 2331.00 10 2340.18 14.82 lrc202 2250.50 3 158.69 2204.66 3 2235.81 38.47
lrc103 2213.32 11 61.28 2195.80 10 2207.54 26.77 lrc203 2192.66 3 157.36 2174.51 3 2189.39 50.17
lrc104 2191.28 10 57.22 2190.22 10 2198.88 35.40 lrc204 2018.41 3 158.92 2018.41 3 2019.13 16.05
lrc105 2335.36 11 60.52 2305.44 10 2321.17 25.32 lrc205 2261.11 3 171.17 2225.98 3 2249.28 18.26
lrc106 2238.28 10 57.77 2226.83 10 2237.95 17.59 lrc206 2281.59 3 145.84 2263.27 3 2279.38 10.88
lrc107 2218.77 10 50.31 2204.83 10 2220.36 43.51 lrc207 2426.00 4 169.05 2366.94 3 2388.16 14.88
lrc108 2201.42 10 51.73 2201.10 10 2202.11 19.21 lrc208 2176.96 3 154.55 2104.36 3 2149.66 18.86
avg 4560.90 9.93 56.22 4553.30 9.69 4559.89 26.88 4424.60 3.04 158.95 4410.96 2.96 4420.09 24.38

better# 22 21
equal# 7 6
worse# 0 0

Table 3
Results for solving public benchmark PDPLT instances with 402–422 nodes.

MS-ITS LMA MS-ITS LMA

Instances fbest Veh Time fbest Veh favg Time Instances Best Veh Time fbest Veh favg Time

LC1_4_1 42336.75 30 405.08 42237.43 30 42340.19 307.99 LC2_4_1 40714.04 12 732.05 40670.71 12 40691.66 210.03
LC1_4_2 42366.74 30 382.77 42346.62 30 42410.56 357.37 LC2_4_2 41140.66 14 737.39 40866.52 12 40919.77 394.92
LC1_4_3 42599.50 30 402.63 42569.57 30 42578.89 386.35 LC2_4_3 41316.85 13 741.09 41014.62 12 41210.58 278.97
LC1_4_4 42482.09 30 417.38 42402.31 30 42456.06 355.22 LC2_4_4 41035.84 13 764.05 40870.53 12 40981.32 324.30
LC1_4_5 42312.18 30 395.00 42213.65 30 42289.31 358.27 LC2_4_5 40996.57 13 772.70 40735.31 12 40810.29 297.03
LC1_4_6 42284.78 29 437.97 42271.70 30 42299.72 388.61 LC2_4_6 40727.48 12 744.81 40594.96 12 40661.76 223.93
LC1_4_7 42257.38 30 391.61 42163.86 30 42231.43 303.67 LC2_4_7 41001.45 13 752.27 40687.18 12 40883.25 385.95
LC1_4_8 42409.92 30 400.83 42381.73 30 42399.15 385.35 LC2_4_8 40925.04 13 737.17 40667.13 12 40760.51 247.25
LC1_4_9 42657.31 30 377.06 42645.50 30 42660.04 371.78 LC2_4_9 40810.30 13 788.56 40745.74 12 40781.96 275.21
LC1_4_10 42539.79 30 406.77 42524.90 30 42539.11 376.14 LC2_4_10 41060.15 14 735.99 40873.01 13 40987.03 366.40
LR1_4_1 10502.64 18 840.63 9851.86 14 9917.68 274.60 LR2_4_1 12095.03 7 1598.11 11186.32 4 11199.84 231.22
LR1_4_2 10624.45 18 827.59 9845.99 14 9941.57 272.03 LR2_4_2 12087.73 10 1528.31 11126.38 4 11564.79 351.06
LR1_4_3 10515.92 18 805.61 9784.51 14 9856.29 284.36 LR2_4_3 11890.15 7 1578.91 10876.17 4 11239.41 314.20
LR1_4_4 9910.92 17 850.89 9147.95 14 9403.33 399.28 LR2_4_4 11445.21 10 1612.69 10371.95 4 10685.31 296.48
LR1_4_5 10190.46 16 762.41 9602.53 13 9820.47 374.79 LR2_4_5 11753.71 6 1622.72 11076.18 6 11542.49 399.52
LR1_4_6 10414.40 16 829.00 9952.60 14 10231.68 396.33 LR2_4_6 11549.06 6 1540.38 10666.13 4 10869.72 155.28
LR1_4_7 10321.30 20 851.63 9495.14 13 9853.49 298.65 LR2_4_7 11454.11 8 1658.30 10383.31 4 10534.97 398.30
LR1_4_8 9290.86 15 856.17 8922.60 12 9127.58 393.68 LR2_4_8 11684.98 6 1472.44 10688.82 5 10898.28 162.62
LR1_4_9 10447.86 18 827.13 9801.38 13 9910.65 373.73 LR2_4_9 11695.28 9 1574.20 10786.47 4 11349.26 136.39
LR1_4_10 10041.44 17 848.27 9417.07 13 9823.10 316.42 LR2_4_10 12228.19 8 1589.20 11064.19 4 11901.38 159.49
LRC1_4_1 9700.01 17 818.39 9178.79 14 9320.28 389.15 LRC2_4_1 10733.52 6 1617.91 9656.87 4 9810.79 349.17
LRC1_4_2 9651.76 16 838.09 8871.73 13 8913.31 305.77 LRC2_4_2 10444.30 5 1670.25 9515.38 4 9882.12 277.20
LRC1_4_3 9667.97 16 759.05 9220.59 14 9513.77 389.64 LRC2_4_3 10704.17 7 1577.23 9673.14 4 10106.65 361.75
LRC1_4_4 9015.70 14 772.53 8823.12 13 8948.09 399.86 LRC2_4_4 10857.97 12 1489.13 9477.39 5 9811.89 368.64
LRC1_4_5 9555.94 16 791.08 8879.86 13 9135.54 292.87 LRC2_4_5 10288.07 7 1612.36 9484.97 4 9879.17 256.31
LRC1_4_6 9363.88 17 814.67 9023.08 14 9136.72 365.37 LRC2_4_6 10596.35 10 1638.67 9275.77 4 9513.30 292.73
LRC1_4_7 9645.08 18 870.91 8828.10 13 9132.86 362.44 LRC2_4_7 11160.72 7 1551.36 9861.02 4 10391.22 385.31

(continued on next page)
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At the beginning of the search, each neighborhood move has the
same score sc0 and hence the same probability of being chosen. After
each iteration j, the score of the neighborhood used is updated as fol-
lows:

= + = =+sc sc i j n l, , 1, 2, ..., ; 1, 2.i j i j l, 1 , (3)

where the reaction factor controls how quickly the score adjust-
ment function reacts to changes according to the performance of the
moves, and parameter denotes the different incremental scores ac-
cording to the following several situations. If one move can produce a
new best solution, we reward this neighborhood move by choosing 1 in
Eq. (3). If one move can generate a better solution than the current
solution, the neighborhood move would still be rewarded 2. However,
if the generated solution is worse than the current solution, then we
punish the move by multiplying the score by as follows:

= =+sc sc i j n, , 1, 2, ..., .i j i j, 1 , (4)

The learning-based local search phase proceeds with iterative ex-
ploitation of the six neighborhood moves as shown in Algorithm 3. In
each iteration, one neighborhood move is picked with probability i
(lines 3–4). Then, if the neighborhood solution S' obtained by this
neighborhood move cannot improve the current solution S, the next
neighborhood move is chosen from those remaining; otherwise, the
current solution S is replaced by the best neighborhood solution S'

generated by current neighborhood move (lines 5–10). Subsequently,
the score of the neighborhood move Ni is updated by Eqs. (3) and (4)
(line 11). During this process, Sb records the best solution found in the
local search, S preserves the best found solution so far, and
no improv iter_ _ denotes the number of iterations without improving the
best found solution Sb (lines 12–16). When none of the moves can
improve the current best solution, we apply a simple perturbation
strategy to achieve a better trade-off between diversification and in-
tensification of the search (lines 17–19).

To apply the perturbation operator, we randomly delete part of the
request nodes (n/ ) from the current solution and re-insert the deleted
request nodes into the partial solution based on a greedy strategy.

Algorithm 3. learning-based local search

Require: Initial current solution(S);
Ensure: Best found solution(Sb) during the search
/ The set of neighborhood moves denoted by I including the six neighborhood
moves proposed in Sec. 3.3.1 /
=I M M M1: { , , , }1 2 6 , I0 I , Sb S , no improv iter_ _ 0

2: while no improv iter_ _ < n do
3: Calculate the probability i of each neighborhood move Mi by Eq. (2)
4: Randomly select one neighborhood move Mi from I with probability i, where

i I1 | |0

5: Choose the best neighboring solution S' from the set of neighboring solutions

generated by Mi move, (i.e., S' S Mi)

6: if S' is not better than S then

Algorithm 3. learning-based local search

7: I I M{ }i
8: else
9: S S I I', 0
10: end if
11: Update the score of the neighborhood move Mi by equations (3) and (4)

12: if S' is better than S (or Sb) then

S13: (or Sb) S', no improv iter_ _ 0
14: else
15: no improv iter_ _ no improv iter_ _ + 1
16: end if
17: if I = 0 then

S18: Perturbation(Sb), I I0
19: end if
20: end while
21: return (Sb)

3.4. Component-based crossover operator

The crossover operator is another key component of our memetic
algorithm. In practice, it is important to devise a dedicated re-combi-
nation operator that has strong ‘‘semantics'' with respect to the studied
problem. In the last few years, several kinds of crossover operator have
been used in the literature. Li et al. (2011) introduced a complicated
crossover operator based on the tree representation and Cherkesly et al.
(2015) proposed an adapted-order-based crossover operator. Both op-
erators can only be used for the LIFO policy and cannot deal with the
FIFO constraint. In this study we propose a general crossover operator,
which is different from the previous ones as follows: First, our crossover
operator always generates feasible solutions with respect to all the
constraints, i.e., the LIFO, maximum time, and maximum capacity
constraints. Thus, it is unnecessary to employ the repair strategy to
ensure feasibility of the generated solutions. Second, based on an iter-
ated greedy construction mechanism, our crossover operator can obtain
high-quality offspring solutions.

We design the proposed crossover operator such that the elite
components are transferred from the parents to the offspring to a large
extent, which follows the general principles underlying the structured
combination approach introduced in Glover (1994), and operates in the
following two sequential steps:

• Step 1. Generate components: We divide the two selected parents
into their corresponding components. To illustrate this, Fig. 4 depicts an
example with two parents Ia = V V{ , }a a

1 2 and Ib = V V{ , }b b
1 2 , where V a

1
andV a

2 (V b
1 andV b

2 ) denote the two routes of solution Ia (Ib). Obviously,
there are three components in the two routes for Ia, i.e., ( + +1 , 2 , 2 , 1 ),
( +5 , 5 ), and ( + +3 , 4 , 4 , 3 ), while there are only two components for Ib,
i.e., ( + + +1 , 4 , 5 , 5 , 4 , 1 ) and ( + +2 , 3 , 3 , 2 ).

• Step 2. Iterated greedy construction based on components: For
each route, components are added sequentially according to a best
saving criterion. The candidate insertion position of each component is
either before or after one component expected for being inserted into
one new route. After each insertion, it is necessary to remove the same
couple of the inserted component from the other parent in order to

Table 3 (continued)

MS-ITS LMA MS-ITS LMA

Instances fbest Veh Time fbest Veh favg Time Instances Best Veh Time fbest Veh favg Time

LRC1_4_8 9528.92 16 829.53 8855.54 13 9111.02 386.94 LRC2_4_8 10882.58 11 1478.17 9441.73 4 9689.08 358.19
LRC1_4_9 9634.73 17 837.19 8949.42 13 9095.33 189.92 LRC2_4_9 11054.00 7 1578.86 9668.99 4 9910.38 206.83
LRC1_4_10 9639.88 16 838.55 8975.52 13 9110.15 398.25 LRC2_4_10 10855.83 7 1590.75 9786.51 4 10213.11 389.08
avg 20730.35 21.17 682.89 20306.15 18.90 20450.25 348.83 21172.98 9.53 1302.87 20393.11 6.83 20656.04 295.13

better# 30 30
equal# 0 0
worse# 0 0
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Table 4
Performance comparisons among VNS, PTS, and LMA for solving PDPLD instances.

BKS VNS PTS LMA

Instance Size fbest Veh favg Gap(%) Time favg Gap(%) Time fbest Gap(%) Veh favg Gap(%) Time

brd14051 25 5086 2 5086.0 0 1.62 5087.2 0.02 0.54 5084 −0.04 2 5084 −0.04 0.41
51 9352 2 9352.0 0 7.27 9438.7 0.93 2.96 9354 0.02 2 9355.4 0.04 2.71
75 8543 2 8543.4 0 19.05 8544.8 0.02 6.84 8544 0.01 2 8544.2 0.01 2.48
101 11,169 2 11169.0 0 21.31 11169.0 0 6.42 11156 −0.12 2 11246.7 0.7 4.81
251 27195 8 28196.1 3.68 172.9 28730.2 5.65 119.51 26690 −1.86 5 27372.6 0.65 89.89
501 58028 8 59090.0 1.83 965.21 60699.8 4.6 907.25 57419 −1.05 8 57810.2 −0.38 330.32
751 96068 12 96421.5 0.37 1345.17 97976.6 1.99 4559.2 95167 −0.94 13 95597.1 −0.49 471.86

d15112 25 108207 2 108207.0 0 1.45 108439.0 0.21 0.31 108208 0 2 108211.3 0 1.09
51 178863 3 179086.0 0.12 5.29 179859.0 0.56 1.13 178866 0 3 178866.5 0 2.33
75 239511 4 244600.7 2.13 13.82 251313.9 4.93 3.71 239516 0 4 239516.1 0 8.29
101 325761 5 339504.3 4.22 14.19 346055.0 6.23 5.28 325761 0 5 325761.3 0 4.22
251 700366 10 720770.3 2.91 98.15 727627.5 3.89 200.22 697292 −0.44 10 703117.9 0.39 65.85
501 1145838 16 1165275.3 1.7 252.73 1188016.3 3.68 663.22 1143485 −0.21 17 1145970 0.01 330.32
751 1596048 22 1622964.0 1.69 1036.52 1637573.1 2.6 1765.95 1587880 −0.51 22 1600147.6 0.26 979.01

d18512 25 5086 2 5086.0 0 1.63 5087.2 0.02 0.54 5084 −0.04 2 5084 −0.04 1.38
51 9245 2 9256.8 0.13 6.67 9286.0 0.44 1.17 9250 0.05 2 9250.1 0.06 2.72
75 10147 2 10148.8 0.02 16.85 10180.7 0.33 8.41 10146 −0.01 2 10146 −0.01 2.92
101 11742 2 11765.6 0.2 31.13 11909.0 1.42 6.24 11614 −1.09 2 11747.2 0.04 18.53
251 27945 5 28933.5 3.54 229.93 29314.2 4.9 206.38 27757 −0.67 5 28757.9 2.91 204.08
501 56790 8 57787.4 1.76 733.32 58928.0 3.76 1241.01 56575 −0.38 8 58109.2 2.32 528.32
751 91670 11 94016.2 2.56 2346.58 95612.5 4.3 3765.94 90801 −0.95 12 91862.9 0.21 2970.85

fnl4461 25 2168 1 2168.0 0 2.35 2168.0 0 0.40 2170 0.09 2 2170 0 0.21
51 4830 2 4830.0 0 4.68 4830.0 0 1.11 4832 0.04 2 4832 0 2.49
75 7399 3 7432.2 0.45 15.83 7466.5 0.91 8.22 7406 0.09 2 7406 0.09 6.19
101 10608 4 10765.3 1.48 18.29 10897.8 2.73 7.32 10604 −0.04 4 10615.9 0.07 13.68
251 30651 4 31334.1 2.23 255.07 31782.4 3.69 210.30 30546 −0.34 4 30842.9 0.63 39.84
501 81994 7 83246.3 1.53 667.54 85081.8 3.77 1596.72 81454 −0.66 7 81702.6 −0.36 478.17
751 135940 12 138626.0 1.98 2163.77 139106.8 2.33 3172.93 135592 −0.26 12 138392.2 1.8 1908.04

nrw1379 25 3464 2 3464.0 0 2.00 3466.1 0.06 0.58 3465 0.03 2 3465 0 0.22
51 5398 2 5423.4 0.47 8.71 5499.3 1.88 2.43 5397 −0.02 2 5397 0 2.74
75 8207 3 8352.2 1.77 20.23 8403.4 2.39 11.84 8219 0.15 3 8220.5 0.16 11.66
101 11933 4 12220.9 2.41 33.06 12537.3 5.06 18.82 11733 −1.68 4 11989.7 0.48 23.78
251 31075 7 31635.0 1.8 96.03 32217.6 3.68 186.17 30957 −0.38 7 31348.5 0.88 76.51
501 68202 13 68962.5 1.12 293.56 70800.0 3.81 775.82 67684 −0.76 13 67914.8 −0.42 150.78
751 122587 21 124711.0 1.73 858.91 125859.0 2.67 1740.60 122179 −0.33 22 123753.9 0.95 771.56

pr1002 25 16221 1 16221.0 0 1.75 16221.0 0 0.21 16221 0 1 16221 0 0.28
51 47905 3 47989.0 0.18 4.60 47980.6 0.16 1.20 47129 −1.62 2 47293.5 −1.28 3.64
75 64102 4 64889.0 1.23 11.94 65197.8 1.71 7.49 63869 −0.36 4 63960.4 −0.22 8.98
101 87700 5 88260.8 0.64 13.78 88373.9 0.77 7.65 87692 −0.01 5 87717.8 0.02 19.01
251 25798 8 263657.4 2.51 60.59 264251.3 2.74 157.55 254460 −1.06 8 256864.3 −0.13 10.12
501 597464 14 611917.4 2.42 396.32 620169.5 3.8 776.39 595095 −0.4 15 599562.1 0.35 297.45
751 1008027 19 1031423.3 2.32 1045.75 1034424.5 2.62 1723.79 1000604 −0.74 20 1017101.2 0.9 375.67

avg 250.71 174422.21 6.40 177923.54 1.27 316.56 179942.44 2.27 568.57 173641.83 −0.39 6.45 174960.23 0.26 243.41
better# 29
equal# 2
worse# 11

Table 5
Comparisons of HIS with RCDP and RDPD on public benchmark PDPLT instances.

RCPD RPBD HIS

Instances Set fbest favg Vavg fbest favg Vavg fbest favg Vavg

lc1 11666.49 11954.37 10 12992.87 13245.64 12 10126.75 10201.19 9
lc2 12191.51 12330.29 4 13329.51 14019.83 5 10738.37 10894.22 4
lr1 3662.08 3844.15 19 4196.58 4321.40 23 2553.86 2778.01 12
lr2 4083.73 4308.95 4 4527.36 4742.02 5 2891.91 2996.54 3
lrc1 4415.38 4764.21 22 4957.51 5119.48 28 2836.88 3008.18 13
lrc2 5007.25 5214.66 5 5556.38 5794.76 6 3318.75 3428.90 4
LC1 61759.62 67891.54 46 76303.72 80432.01 58 44253.90 47812.32 32
LC2 59966.55 65048.99 17 70925.37 74501.11 20 44595.98 48676.67 13
LR1 31547.26 35674.50 43 41113.11 46487.24 61 13548.62 15998.56 18
LR2 34561.74 37529.64 11 43408.86 48645.30 14 17700.74 19741.52 6
LRC1 31231.48 35671.47 46 42537.10 45789.69 68 12493.77 13987.12 17
LRC2 34043.98 38485.91 11 46199.36 49975.54 16 16365.12 17895.55 5
avg 24511.42 26893.22 19.83 30503.98 32756.17 26.33 15118.72 16451.56 11.33

better# 12
equal# 0
worse# 0

B. Peng, et al. Computers & Industrial Engineering 142 (2020) 106241

9



avoid redundancy. The best insertion position of each component cp in
the route is the one yielding the minimum value of f ':

=f f' ( ) , (5)

where f( ) represents the incremental objective value after in-
serting component cp in the route and denotes the number of couples
in component cp. As shown in Fig. 4, we insert component
( + +1 , 2 , 2 , 1 ) into routeV c

1 and remove two couples ( +1 , 1 ) and ( +2 , 2 )
from Ia and Ib. Then, we insert the next component ( +3 , 3 ) with the
best value f ' into routeV c

1 . Note that if all the cases for which one of the
remaining components is inserted into route V c

1 will violate the max-
imum time constraint, then the selected component ( + +4 , 5 , 5 , 4 ) will
constitute one new route V c

2 .

3.5. LCS-based population updating strategy

To maintain healthy diversity of the population, we use the LCS-
based population updating strategy introduced by Cheng and Peng
(2016) to solve the job shop scheduling problem, to decide whether the
improved solution should be inserted into the population or discarded.
This population updating strategy simultaneously considers the solu-
tion quality and the distances among the individuals in the population

to guarantee diversity of the population. The underlying idea is that the
similarity of two solutions based on the longest common subsequence
could clearly match the neighborhood moves based on the insert and
swap operations. For this purpose, we first make two definitions as
follows:

Definition 1 ((Distance between a solution and its population).). Given
a solution Si and the population =PP S S S{ , , , }np1 2 , the distance
Dist S( )PP i between the solution Si and its population PP can be defined as
follows:

=Dist S Min n lcs S S i j np i j( ) {2 ( , ): 1 , , },PP i i j (6)

where n2 and lcs S S( , )i j denote the number of all the pickup and
delivery nodes and the length of the longest common subsequence
between Si and Sj, respectively. For example, given a solution S1 =
( + + +i i j j k k, , , , , ), the candidate neighboring solution is represented
by S2 = ( + + +j j k k i i, , , , , ) after a request-insert move by insert
request i after request k. The distance between S1 and S2 based on the
longest common subsequence is only 2 while the distance between S1
and S2 based on the classic Hamming distance can be 6. With respect to
the hamming distance of solutions S1 and S2, these two solutions are
completely different solutions. However, both solutions can be
converted by using an insert neighborhood move. Hence, the longest
common subsequence mechanism can better match the insert and swap
moves.

Definition 2 ((Goodness score of a solution in the population).). The
goodness score GS S( )i of a solution Si is defined by its objective function
value, as well as its distance to the population, as follows:

= ×
+

+ ×
+

GS S
f f

f f
Dist S Dist

Dist Dist
( )

1
(1 ) ( )

1
,i

max S

max min

i min

max min

i

(7)

where fmax and fmin denote the maximum and minimum objective
values of the individuals in the population PP, and Distmax and Distmin
are the maximum and minimum distances between a solution to the
population, respectively. The is a constant parameter. Since it could
be Distmax = Distmin, in the denominator, Distmax - Distmin + 1 was used.

In each generation, the offspring individual is inserted into the
population if the goodness score of the offspring is better than the worst
solution in the population according to the goodness score. Otherwise,
the offspring individual is discarded. It is clear that the greater the
goodness scoreGS S( )i is, the better is the solution Si. It is noted that this
goodness score function simultaneously considers the factors of solution
quality and population diversity. On the one hand, we should maintain
a population of elite solutions. On the other hand, we have to empha-
size the importance of the diversity of the solutions to avoid premature
convergence of the population.

4. Computational studies

In this section we report extensive computational studies conducted
to assess the performance of the proposed learning-based memetic al-
gorithm (LMA) with the state-of-the-art reference algorithms in solving
public benchmark instances of both PDPLD and PDPLT. Note that
PDPLD is a special case of PDPLT where the latter simply considers very
high vehicle capacity and ignores the service times in the request nodes.

4.1. Benchmark instances and experimental protocols

For experimental evaluations, we use two data sets in Benavent
et al. (2015) and Cheang et al. (2012). The first set of benchmark in-
stances was first proposed in Li and Lim (2003) for the pickup and
delivery problem with time windows (PDPTW), which consists of six
classes of instances, namely lc1, lc2, lr1, lr2, lrc1, and lrc2, where the
nodes in the lc instances are in clusters, in the lr instances are randomly
distributed, and in the lrc instances are partially clustered and partially

Fig. 6. Comparative results of HIS with RCPD and RPBD in terms of (a)average
total duration (b)the corresponding number of vehicles, respectively.
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randomly distributed. Benavent et al. (2015) modified these original
instances to match the new problem PDPLT by setting the maximum
route duration equal to the width of the time window associated with
the depot and ignoring all the other time windows. Hence, in our
computational studies, we used the same benchmark instances as
thosed used in Benavent et al. (2015). The instances can be divided into
two subsets of 116 instances, including 56 small-size instances with
100–110 request nodes and 60 large-size instances with 402–422 re-
quest nodes.

The second set of benchmark instances was used in Cheang et al.
(2012) for PDPLD. Since PDPLD is a special case of PDPLT, we compare
our learning algorithm LMA with the reference algorithms in the lit-
erature by setting a very high vehicle capacity limit for each vehicle and

ignoring the service time in each request vertex. These instances were
derived from the six TSP instances fn14461, brd14051, d15112,
d18512, nrw1379, and pr1002 extracted from TSPLIB (Reinelt, 1991).
For each of these TSP instances, subsets of vertices were selected with
25, 51, 75, 101, 251, 501, and 751 vertices. In addition, we imposed a
travel distance limit dmax on each instance, where

= + ++ + +d max d i d i i d i{ (0 , ) ( , ) ( , 0 )}max (i r ), which is the lar-
gest distance for any route involving a single request. All the bench-
mark instances are publicly available on the website1, as well as the
executable files of our LMA method.

Table 6
Comparison of the memetic algorithms with and without the learning-based mechanism on public benchmark PDPLT and PDPLD instances.

WLMA LMA

Instances Set fbest favg Time fbest favg Time

lc1 9863.21 9865.69 20.59 9862.57 9862.93 23.37
lc2 9834.25 9842.23 17.72 9834.01 9834.40 17.84
lr1 2117.58 2136.90 29.54 2113.59 2121.18 30.80
lr2 2085.46 2315.71 35.14 2082.07 2288.05 33.25
lrc1 2246.18 2304.58 27.09 2240.07 2251.93 25.69
lrc2 2210.52 2227.36 20.11 2190.81 2212.35 23.10
LC1 42390.90 42551.95 385.68 42375.73 42420.45 360.08
LC2 40972.84 41056.29 312.42 40772.57 40868.81 300.34
LR1 9715.79 9801.76 323.63 9582.16 9788.584 338.38
LR2 11788.35 12183.44 281.18 10822.59 11178.55 260.46
LRC1 9210.61 9431.28 360.73 9030.575 9141.71 348.02
LRC2 9712.52 10233.04 345.24 9584.18 9920.77 324.52
brd14051 30510.23 30719.17 345.24 30487.29 30711.20 143.43
d15112 611889.62 619696.93 187.57 611571.29 614512.51 198.01
d18512 30384.21 30890.80 589.35 30175.29 30708.19 532.69
fnl4461 39077.55 40018.72 305.10 38942.86 39422.04 352.65
nrw1379 35723.52 36001.26 206.96 35662.00 36012.01 149.56
pr1002 296784.67 299954.69 235.22 295010.00 298385.43 110.43
avg 66473.22 67290.66 223.81 66241.09 66757.84 198.48

better# 18
equal# 0
worse# 0

Fig. 7. Percentage of the chosen times for six neighborhood moves in LMA.

1 https://github.com/283224262/PDPLT.
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In this study we coded our LMA algorithm in C++ and ran it on a
PC with a AMD Athlon 3.0 GHz CPU and 2 Gb RAM operating under the
Windows 7 operating system. To evaluate the performance of LMA, we
compare it with the following state-of-the-art heuristics from the lit-
erature:

• The multi-start iterated tabu search (MS-ITS) for PDPLT proposed by
Benavent et al. (Benavent et al., 2015), who implemented it on a
2.66 GHz Core 2Quad processor with 3 Gb RAM under the Windows
XP operating system.
• Eight heuristics including a Variable Neighborhood Search (VNS)
algorithm, six reduced versions of the VNS heuristic, and the
Probabilistic Tabu Search (PTS) algorithm for PDPLD proposed in
Cheang et al. (2012), who tested their performance on a Dell server
with an Intel Xeon E5520 2.26 GHz CPU and 8 GB RAM operating
under the Linux operating system. The computing times reported are
in CPU seconds on this server.

In order to achieve relatively fair comparisons, we apply the method

proposed in Chen, Hao, and Glover (2016) to scale the computing times
reported for the mentioned heuristics in the corresponding studies. The
procedure is based on the assumption that the CPU speed is approxi-
mately linearly proportional to the CPU frequency. Specifically, we
performed ten independent runs of our LMA for each instance, with the
maximum time limit per run set to equal the scaled CPU times by
multiplying the computing time reported by the current best-per-
forming algorithms from Benavent et al. (2015) and Cheang et al.
(2012) with the ratio values (2.66/3.0) and (2.26/3.0), respectively.

4.2. Parameter tuning and parameter sensitivity analysis

Table 1 presents the settings of the LMA parameters used in the
reported experiments. We tuned the parameters ( , 1, 2, , , np, ,
and ) with the Iterated F-race (IFR) proposed by Birattari, Yuan,
Balaprakash, and Stützle (2010) and an automated configure method
that is part of the IRACE package from Lopez-Ibanez, Dubois Lacoste,
Caceres, Birattari, and Stützle (2016). We performed the tuning process
on instances LC1, LR1, LRC1, brd14051, d15112, d18512, fnl4461,

Fig. 8. Comparisons of LMA with its variants that exclude six different neighborhoods.

Fig. 9. Comparisons of LMA with its variants that use two crossover operator (i.e., one-point crossover and two-point crossover).

Fig. 10. Comparisons of LMA with its variant that uses the Hamming distance in the population updating procedure.
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nrw1379, and pr1002 with 402–440, 501, and 751 vertices. For each
parameter, IFR requires a limited set of values as input to choose from
the ‘‘candidate values'' which are empirically determined and presented
in Table 1. We set the total time budget for IRACE to 1,000 executions
of LMA, with a time limit of 400 s for the PDPLT instances LC1, LR1,
and LRC1, and 3,000 s for the PDPLD instances brd14051, d15112,
d18512, fnl4461, nrw1379, and pr1002. We denote the parameters
setting suggested by IFR as Finalvalue in Table 1.

To evaluate the sensitivity of each parameter, we performed a fur-
ther tuning study on these representative medium and large instances.
For each running, we evaluated each candidate value from Table 1 by
fixing the remaining parameters to the corresponding values. We per-
formed ten independent runs for each instance. We present the dis-
tribution and range of the average results for each parameter in a box-
and-whisker plot in Fig. 5. In order to determine whether there exist
statistically significant differences in the solution samples for different
values of each candidate parameter, we conducted the the Friedman
rank sum rest. We report the corresponding p-values in Fig. 5. The
Friedman test reveals statistically significant differences in performance
for parameters (p-value = 0.0033), 1 (p-value = 0.0451), 2
(p-value = 0.0472), (p-value = 0.0005), (p-value = 0.0306), and
(p-value = 0.0247), while the remaining parameters do not exhibit
significant differences. From the plots in Fig. 5, we further observe that
the best-performing parameter values are almost the same as the best

parameter values reported by IFR.

4.3. Computational results on the tested benchmark instances

In this section we evaluate the performance of LMA in solving
PDPLT in comparison with the best-performing algorithm MS-ITS pro-
posed by Benavent et al. (2015). Specifically, we applied LMA to solve
each instance for ten times, terminating each run when the time
reached the maximum time of 400 s. As depicted in Tables 2 and 3, the
columns fbest , Veh, favg, and Time report the best objective value, i.e.,
the minimum travelled duration, the number of vehicles corresponding
to the best solution, the average objective value over the ten runs, and
the computing time, respectively. In addition, the rows best# , equal# ,
and worse# indicate respectively the numbers of instances for which the
associated algorithm obtains better, equal, or worse objective values in
terms of fbest compared with the reference results reported in the lit-
erature, and the row avg denotes the average value over all the in-
stances in the set.

From Table 2, we observe that LMA outperforms the reference al-
gorithm MS-ITS in terms of fbest , Veh, and Time. In particular, LMA
achieves better results than the current best-performing algorithm MS-
ITS in terms of obtaining the best objective value for 43 out of the 56
instances, while matching the current best-known results for the re-
maining 13 instances. Moreover, LMA is able to obtain the best objec-
tive value within a very short time, which is several times faster than
the reference algorithm MS-ITS for the tested instances, i.e., MS-ITS's
56.22 and 158.95 versus LMA's 26.88 and 24.38.

To further compare the performance of LMA and the reference al-
gorithm MS-ITS, we applied them to solve the large-size instances with
402–422 nodes. Table 3 presents the results in detail. It is evident that
LMA is able to obtain better results in terms of both the best objective
value and computing time for all tested instances. Furthermore, in
terms of the number of vehicles corresponding to the best objective
value, LMA usually outperforms MS-ITS for the tested instances, i.e.,
MS-ITS's 21.17 and 18.9 versus LMA's 9.53 and 6.83.

In view of its good performance, we further compare LMA with the
eight heuristic algorithms for PDPLD instances in Cheang et al. (2012).
As shown in Table 4, the first two columns present the instance iden-
tifiers and the number of the request vertices, respectively. The fol-
lowing two columns report the best objective value fbest , and the
number of the vehicles Veh corresponding to the best known solution
(BKS) found by the eight heuristics denoted as BKS, including a VNS
algorithm, six reduced versions of the VNS heuristic, and the PTS al-
gorithm for PDPLD in Cheang et al. (2012). We present the average
results of the objective value favg, the gap of favg value to the BKS value

Fig. 11. The effect of the parameter.

Table 7
Summary for the key components in LMA.

Key components Description Motivation Influence and results

Hybrid initial solution (HIS)
method

HIS adapts the splitting mechanism for PDPLT
by employing the Lin-Kernighan heuristic (LKH)
for the ATSP sub- problem in PDPLT to improve
the solution quality of the initial solutions.

The similar initial generation method is
successfully applied to other routing problems
(such as multi-depot VRP and multi-route VRP).

Experimental results in Section 5.1 show
that HIS can generate better initial
solutions than two previous methods
RCDP and RPBD.

Learning-based mechanism Reinforcement learning mechanism is able to
effectively exploit memory to manage the
neighborhood moves.

(1) The structure of the problem instances
affects the performance of neighborhood
moves; (2) Alternating among different moves
based on the proposed learning mechanism
yield more robust performance.

Experimental results in Sections 5.2 and
5.3 show the effectiveness of the learning
based-mechanism and six neighborhood
moves.

Components-based crossover Two steps based on the iterated greedy method
to generate the feasible offspring solution.

(1) The classic one-point and two-point
crossover usually generate a infeasible offspring
solution; (2) The dedicated component-based
crossover based on the problem structure may
obtain a better performance.

Better performance in comparison with
two crossover operators in Section 5.4
shows its importance.

Longest common subsequence
(LCS) based population
updating strategy

We define the distance and goodness score in the
population, which are based on the longest
common subsequence strategy

The similarity of two solutions based on the
longest common subsequence could better
match the neighborhood moves based on the
insert and swap operations.

Compared with the Hamming distance
based updating strategy, LCS-based
updating strategy can obtain a slightly
better performance (see Section 5.5).
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in percentage (%), and computing time Time obtained by the VNS and
PTS algorithms in ten executions in columns 5–10. The last six columns
show that LMA obtains better results for 29 out of 42 instances, matches
the current best-known results for 2 instances, and is slightly worse
than MS-ITS for 11 instances. In addition, LMA outperforms VNS and
PTS in terms of the average objective value, the average gap and the
average computing time for most tested instances.

To summarize, the results of the above extensive computational
studies demonstrate the efficacy of LMA in tackling PDPLT in terms of
both solution quality and computational efficiency.

5. Analysis and discussions

In this section we analyze several key components and one im-
portant parameter of LMA, including the hybrid initial solution (HIS)
method, the learning-based mechanism to manage the neighborhood
moves, the six neighborhood moves, the component-based crossover
operator, and the parameter for the goodness score, with a view to
understanding their impacts on the performance of LMA.

5.1. Comparisons between the hybrid initial solution method and the
previous construction methods

To study the effectiveness of the proposed HIS method, we compare
it with the two effective reference methods, namely random solution
with consecutive pickups and deliveries (RCPD), and random solution
with pickups before deliveries (RPBD), proposed in Benavent et al.
(2015) for PDPLT. Since all the initial solution generation methods only
run within a very short time (in fact, less than one second) for all the
benchmark instances, we ignore the comparison in terms of computing
time. We performed ten runs of each method to solve each instance and
recorded the best objective value (minimum duration) and the corre-
sponding number of vehicles. Table 5 and Fig. 6 present the compar-
isons of the HIS method with the RCDP and RPBD methods on different
classes of instances. Table 5 presents for each instance set its name, the
average results in terms of the best objective value fbest and the average
objective value favg for each instance set, and the average number of
vehicles Vavg corresponding to the best solution, which is rounded to an
integer. Fig. 6 graphically shows the comparisons of HIS with RCDP and
RPBD, where the horizontal axis denotes the sets of instances, and the
vertical axis denotes the total duration and the number of vehicles,
respectively.

From Table 5 and Fig. 6, we observe that HIS is able to obtain better
results than RCDP and RPBD in terms of the best objective value and the
corresponding number of vehicles. As the size of the instances becomes
larger, the advantage of LMA becomes more evident. In sum, HIS is a
very effective initial solution generation method for PDPLT.

5.2. Analysis of the learning-based mechanism

To highlight the importance of the learning-based mechanism in
LMA, we carried out the following computational studies. We use LMA
and WLMA to denote the learning-based memetic algorithm and the
memetic algorithm without the learning mechanism, respectively. In
other words, under WLMA, the neighborhood moves are chosen in a
token-ring fashion (i.e., N N, ,1 6) with the same fixed probability
without the learning-based reward and punishment strategy, while
other ingredients are kept unchanged.

We independently solved each instance for ten times by using LMA
and WLMA. We report the computational results in Table 6, which
shows the average result in terms of the best objective value and
average objective value, fbest and favg, respectively, in each instance set,
and the average computing time per successful run, i.e.,Time, where we
indicate the best objective values between the two algorithms in bold.

Table 6 shows that when the learning-based mechanism is used,
LMA outperforms WLMA on all the public benchmark instances. In

particular, in terms of the best and average objective values, LMA ob-
tains better values than WLMA for all the tested instances, as illustrated
by WLMA's 66473.22 and 67290.66 versus LMA's 66241.09 and
66757.84. As for the average running time, the two algorithms are very
close to each other, i.e., WLMA's 223.81 versus LMA's 198.48. Specifi-
cally, LMA takes shorter (longer) average computing times to reach the
average best results on 13 (5) sets of the tested instances, respectively,
compared with WLMA.

In order to further study the characteristics of the learning me-
chanism. We obtain the percentage of the chosen times for six neigh-
borhood moves during the search of LMA for ten representative in-
stances with different scales2. We run each instance once with the
maximum time limit of 360 s by using LMA. Fig. 7 shows the experi-
mental results for the percentage of the chosen moves for all the six
neighborhood moves in LMA. The probability of choosing small moves
with no more than two requests (such as M1 and M2) clearly decreases as
the size of the instances increases (for sizes ranging from 25 to 501). In
contrast, the probability of choosing large moves based on components
(such as M4, M5 and M6) significantly increases. One can clearly observe
that the large moves are preferred in the large scale instances. In gen-
eral, the probability of each move being selected varies for difference
instances, which are significantly different from the token-ring fashion
for WLMA (with the same probability for each move) verifying the
impact of our proposed learning mechanism.

The above results indicate that our learning-based mechanism plays
a crucial role in boosting the performance of LMA in solving PDPLT.

5.3. Effectiveness of the neighborhoods

As described in Section 3.3.1, our LMA procedure employs six
dedicated neighborhood structures (M1-M6). In this section, we in-
vestigate the influence of each neighborhood on the performance of the
LMA algorithm. For this purpose, we propose six variants of LMA such
that for each LMA variant, we disable one particular neighborhood
while keeping other components unchanged. Along with the standard
LMA algorithm, six LMA variants are tested on ten representative in-
stances. Specifically, for each instance, all the reference methods were
iteratively performed until a pre-fixed maximum time of LMA given in
Tables 2–4 is reached. The best and the average performances are
plotted in Fig. 8, where the y-axis indicates the percentage gap to the
best-known solutions (see Tables 2–4). Fig. 8 shows that the manner in
which removing a neighborhood deteriorates the search power of LMA,
and confirms that all six neighborhoods contribute to the performance
of the LMA algorithm. Apart from the usefulness of each individual
neighborhood, their combined use within the LMA algorithm con-
stitutes an important feature to ensure the performance of the whole
algorithm.

5.4. Impact of component-based crossover operator

LMA applies the component-based crossover operator described in
Section 3.4 to generate feasible and promising offspring solutions. To
investigate the merit of this crossover operator, we compare LMA with
two variants that use only one-point and two-point crossover operators
respectively. Both operators are classic crossover operators used in
scheduling and routing problems (Kellegöz, Toklu, & Wilson, 2008; Lu,
Hao, & Wu, 2019), and can be described as follows. In the one-point
crossover operator, the first step is to randomly select one cutting point.
The node sub-sequence on one side of the cutting point is inherited from
one parent and passed to the offspring. The other nodes are copied to
the offspring in the order they appeared in the other parent. In the two-

2 Ten representative instances consists of brd14051_25, d15112_51,
d18512_75, fn14461_101, lc101, lr101, nrw1379_251, LC1_4_1, LR1_4_1, and
pr1002_501.
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point crossover operator, two cutting points are randomly selected to
divide the parent solutions. By reference to the two parent solutions S1
and S2, the offspring is obtained by first transferring the sub-sequence
between the two cutting points from S1, and then copying in the same
order the remaining nodes from S2. In contrast to the component-based
operator, both two reference operators usually generate infeasible so-
lutions, violating the LIFO constraint. Hence, we employ the request-
insertion neighborhood operator to reschedule the position of the
conflicting requests to make the infeasible solution satisfy the max-
imum duration, maximum capacity, and LIFO constraints. For this
analysis, we repeat the same experimental procedure as in the previous
section. The best and the average performances are plotted in Fig. 9. In
terms of the best and the average results, we observe a better perfor-
mance of LMA when the component-based crossover operator is used,
which highlights its importance in LMA.

5.5. Impact of longest common subsequence based updating strategy

To investigate the merit of the longest common subsequence me-
chanism, we compare LMA with a variant that uses the Hamming dis-
tance in the population updating procedure, as described in Section 3.5.
For this analysis, we repeat the same experimental procedure as in the
previous section. The best and the average performances are plotted in
Fig. 10. In terms of the best and the average results, we observe a
slightly better performance of LMA when the longest common sub-
sequence is used. In particular, LMA is able to obtain better values for
the best results than the LMA variant that uses the Hamming distance
for two solutions, although both methods perform similarly in terms of
the average results, which show the effectiveness of the longest
common subsequence for LMA.

5.6. Importance of the parameter

The LCS-based population updating strategy considers both solution
quality and the distances between solutions and the population in up-
dating the search. The parameter is used to balance these two factors
in order to achieve a better trade-off between intensification and di-
versification of the search. In order to ascertain the importance of in
LMA, we conducted the following computational studies.

. Specifically, we selected eight representative sets of instances with
different scales of the benchmark instances, namely lc2, lr2, lrc2, LC2,
LR2, LRC2, fn14461 and pr1002. Taking into account the randomness
of the algorithm, we ran it ten times for each parameter setting (0, 0.1,
, 1.0). Fig. 11 presents the average results over all the tested in-

stances, where the horizontal axis denotes the value of the parameter
and the vertical axis denotes the computing time and the objective
values normalized by the following normalized function:

=z z z
z z

( ) .min

max min (8)

Fig. 11 shows the trajectories of the computing time and objective
value over different values. When is equal to 1, which gives all the
weight to the objective value and none to the population distance, the
corresponding algorithm is the fastest but cannot find high-quality so-
lutions because the algorithm does not consider the diversity of the
population, while the algorithm can obtain the best values with set at
0.6 to 0.8. The results demonstrate that premature convergence of the
algorithm can be avoided by employing the LCS-based population up-
dating strategy. We further observe that the best-performing parameter
values are the same as the best parameter values analyzed in Fig. 5.

At last, we summarize and explain the key proposed components, as
well as highlighting their corresponding motivations and influences in
our LMA in Table 7.

6. Conclusion

Our learning-based memetic algorithm LMA for the pickup and
delivery problem under the LIFO loading policy demonstrates the ef-
fectiveness of its key features, which include a hybrid initial solution
construction method, a learning-based local search procedure, a com-
ponent-based crossover operator utilizing the ideas of structured com-
binations, and a longest-common-subsequence-based population up-
dating strategy.

Experimental evaluations on two sets of public benchmark instances
show that our LMA performs very favourably compared to the current
state-of-the-art reference algorithm MS-ITS benavent2015multiple and
the eight heuristics including a VNS algorithm, its six reduced versions,
and PTS for PDPLD proposed in Cheang et al. (2012). In particular, LMA
is able to obtain highly competitive results in terms of both computa-
tional efficiency and solution quality for most of the PDPLT and PDPLD
instances, improving the best-known results for 132 out of 158 of the
tested problem instances, while matching the best-known results for all
but three of the remaining instances. In addition, our computational
studies demonstrate the effectiveness of the key strategies incorporated
into our proposed LMA.

These outcomes motivate future research to extend our work in the
following directions: First, it would be interesting to employ a powerful
tabu search method (such as granular tabu search) to improve the
search capability of the learning-based local search phase. Second, the
design of our approach invites the development of related procedures
that combine its strategies with those of other population-based fra-
meworks like path-relinking (Glover, Laguna, & Marti, 2000) should be
very promising. Finally, the success of these ideas for tackling the
PDPLT problem suggests that it would be worthwhile to test their
performance in dealing with other variants of the vehicle routing pro-
blem.
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